数学心

第五百九十七章 扎里斯基拓扑(概型)(1/2)

言情小说吧【m.yqxsb.com】第一时间更新《数学心》最新章节。

扎里斯基早年在基辅大学学习时,对代数和数论很感兴趣,在意大利深造期间,他深受三位意大利卡斯泰尔诺沃、恩里克斯、塞维里在古典代数几何领域的深刻影响。

意大利几何学者们的研究方法本质上很富有“综合性”,他们几乎只是根据几何直观和论据,因而他们的证明中往往缺少数学上的严密性。

扎里斯基的研究明显带有代数的倾向,他的博士论文就与纯代数数学有着密切联系,精确地说是与伽罗瓦理论密切联系。

当然也就激发了他在研究方程的时候,也会用到环论这样的思想。

取得博士学位後,他在罗马的研究工作仍然主要是与伽罗瓦理论有密切联系的代数几何问题。

一九三七年扎里斯基的研究发生了重要的变化,其特点是变得更代数化了。

他所使用的研究方法和他所研究的问题都更具有代数的味道〔这些问题当然仍带有代数几何的根源和背景〕。

扎里斯基对意大利几何学者的证明感到不满意,他确信几何学的全部结构可以用纯代数的方法加以重新建立。

在一九三五年左右,现代化数学已经兴盛起来,最典型的例子是诺德与范德瓦尔登有关论著的发表。

范德瓦尔登从这个观点出发把代数几何抽象化,但是只取得了一部分成就,而扎里斯基却获得了巨大成功。

扎里斯基开始研究如果方程在坐标系里有一种图形,能不能从方程中翻译出拓扑学的一些性质呢?

对于这个方程来说,也有一种拓扑学的那种洞。

而这个洞,必须是一种无穷大那样的奇点。

最简单的奇点是通常二重点,还有尖点,迷向点,ADE奇点(确切地说这是曲面奇点,但是它可以对应成曲线奇点)

他的博士论文主要是把所有形如f(x)-tg(x)=0的方程分类,这里面f和g是多项式,x可以解为线性参数t的根式表达式。扎里斯基说明这种方程可分为五类,它们是三角或椭圆方程。

ADE奇点就是代数曲面上的有理二重点,它可以通过奇点解消的方式爆发成为ADE曲线。

ADE奇点有五种类型:

A_n型:对应方程z^2=x^2+y^n

D_n型:对应方程z^2=y(x^2+y^)(n≥4)

E_6型:对应方程z^2=x^3+y^4

E_7型:对应方程z^2=x(x^2+y^3)

E_8型:对应方程z^2=x^3+y^5

任何ADE奇点都是超曲面奇点,也是循环商奇点。它们的有理典范除子是零,重数是2。

除此以外有无穷大点,不连续的拐折点。

为了严格下定义,扎里斯基认为方程等于0,x一阶导等于0,y一阶导为0,就可以称之为奇点了。

如果f(x,y)的泰勒展开中不包含一次项的话,否则就称该点是光滑点。

换句话说,我们幂级数展开f(x,y)=ax+by+cx^2+dxy+ey^2+高次项,如果a和b不全为零,那么该原点就称为C的光滑点,否则就称为奇点。

一个带有奇点的平面曲线 C 必定是某个射影空间中的光滑曲线 C'到射影平面的投影。 找出这样的光滑曲线 C'的过程,称为 C 的奇点解消或者正规化。

曲线奇点有很一些有趣的不变量来刻画,比如它的重数(就是泰勒展开式中最低项的次数),局部分支数,几何亏格,Milnor数等等。

这些不变量之间有着一定的联系,对它们的研究属于奇点拓扑这一分支。

扎里斯基对莱夫谢茨说:“我听了你的代数几何的拓扑问题后,想到让方程的拓扑学体现出来,就可以从代数簇中直接进行。代数簇的思想,不就是所有的方程本来都是多项式,而多项式仅仅有加法和乘法。就相当于是代数簇在做很多加和乘的运算来组成各种曲线,那么就是环的作用而形成曲线。代数几何的问题也就是交换环的理想的问题。”

莱夫谢茨说:“那你要是研究方程的拓扑性质,就从环这个结构开始就行了。”

扎里斯基知道这些方程不需要在坐标系里定位,所以用了仿射空间,或者叫线性空间,只需要表示他们的形状就行。

仿射空间,又称线性流形,是数学中的几何结构。这种结构是一种特殊的线性空间,是欧式空间的仿射特性的推广。在仿射空间中,点与点之间做差可以得到向量,点与向量做加法将得到另一个点,但是点与点之间不可以做加法。

然后扎里斯基的工作就是把这些方程变成拓扑结构了。

在一九二七至一九三七年间,扎里斯基给出了关于曲线C 的经典的黎曼-罗赫定理的拓扑证明,在这个证明中他引进了曲线 C 的 n重对称积 C(n)来研究 C 上度数为 n 的除子的线性系统。

本章未完,点击下一页继续阅读。

人气小说推荐More+

单纯校花重金求子?我直接应聘接单
单纯校花重金求子?我直接应聘接单
前世猝死在工作岗位上的林小严,死后重生回高三毕业的第一天。重生后,他意外发现,曾经的高中校花顾若瑶,竟然在从事重金求子的诈骗行业!一瞬间...校花顾若瑶那清纯甜美的形象,在他心中轰然崩塌...不入虎穴,焉得虎子?为了满足顾若瑶重金求子的心愿,林小严大喊出那句名言。“我不入地狱,谁入地狱!!”
兔子的小调
我在地狱游戏里当卧底
我在地狱游戏里当卧底
当人生中唯一的光明消失,你会怎么做?谢长欢:“我会用他离开的方式离开。【欢迎来到地狱游戏,本游戏发起者为地狱,玩家为将死之人!注意!将死!不是已死!】【当玩家积分达标时,即可重回人间!】……那一天,全城的纸钱都被一位少年买下,烧给同一个人,随着纸钱一起的,还有独栋别墅和一辆豪车。谢长欢:“无父无母孤儿一枚,求收留!范九安:“跟我回家。……范九安认真科普:“冬天穿的越厚,睡觉越冷。谢长欢似懂
嗷呜哇
成为漫画人气Top先从BE开始
成为漫画人气Top先从BE开始
是一部包括热血、温馨、休闲、喜剧等因素的热血少年漫,因其画风的精致、剧情的出其不意和主角们的意难平收获了一众粉丝的喜爱。然而作者在高潮部分断更,一断就断三年,在读者哀怨的等待中,三年后番外篇开始更新,漫画论坛顿时登顶第一!那是一个新的角色——他毒舌、张口第一句话就是让人去死、眼神也是止不住的厌恶、经常会提各种不合理的要求别人执行。所有读者在一开场抱着对新角色的厌恶,然而……[这简直是在要我命!又
一只月兔
出狱断亲你提的,我成医圣你跪什么?
出狱断亲你提的,我成医圣你跪什么?
秦阳为同父异母的妹妹秦东海顶罪,入狱六年,狱中获得医武传承,拯救至亲于水火,令家族企业获得新生!出狱后,至亲之人却暗中对他算计,不惜对他下毒,要将他毒杀!秦阳幡然醒悟,这群所谓的至亲都是一群白眼狼!“你们不仁在先,别怪我不义,你们下半辈子组队上街要饭吧!”“现在才知道后悔?太迟了!”
熬夜小乖
怎么从be作者手中找出唯一he
怎么从be作者手中找出唯一he
“你总得付出点什么,你懂的,炼金术的铁则:等价交换。“其实相比于别人,我索取的已经少得可怜,仅仅是一个人的回忆而已。“不足轻重的回忆。男人将背起的铜棺放下,鸢尾花的浅蓝模糊了他的视线,那对冷肃的紫金瞳里罕见的浮现出几抹犹豫与追忆。魔女之死、升华之礼、猎魔与秘血、国度与王皇……黄金乡、浮士德、死海教宗、西斯庭教堂……“不,我承担不起空落的代价。在此时未降临前的彼时,于此刻已降临后的彼刻,命运
悲雨无鳞