数学心

第六百四十八章 舒伯特(Schubert)计数(1/1)

言情小说吧【m.yqxsb.com】第一时间更新《数学心》最新章节。

Calabi-Yau也在数学中引发了一系列重大的进展,如超弦学家Candelas等人通过研究不同的Calabi-Yau流形给出的相同的超对称共形场论所发现的镜对称猜想。这个猜想由丘成桐、连文豪与我以及Givental独立证明,它解决了代数几何中遗留了上百年的舒伯特(Schubert)计数问题。

大概在格林恩与普列瑟的论文发表一年后,镜对称的下一步发展攫取了数学社群的注目。

坎德拉斯、德拉欧萨(Xenia de la Ossa)、保罗·葛林(Paul Green,马里兰大学)、帕克斯(Linda Parks)四人证明了,镜对称可以帮忙解决一个代数几何学与“枚举几何学”(enumerative geometry)中的难题,这是超过数十年未解的问题。

坎德拉斯团队所研究的是五次三维形的问题,这个问题也称为舒伯特问题,舒伯特(Hermann Schubert)是19世纪的德国数学家,他解决了这个难题的第一部分。

所谓舒伯特问题是计数在五次卡拉比—丘流形上“有理曲线”(rational curve)的数目,其中有理曲线是像球面一样,亏格为零或没有洞的曲线(实二维曲面)。

计数这些东西听起来像是种古怪的消遣,但如果你是个枚举几何学家,那么这就是你每天的主要工作。

不过这个工作丝毫不简单,绝不像把罐子中的太妃糖倒到桌上数一数而已。

如何计数流形上的物件;如何为问题找到正确架构,使得计数所得到的值有用,百余年来一直是数学家的挑战。

举例来说,如果想让最后计数出来的数值是有限而不是无限的话,我们能计数的对象就必须是紧致空间,而不能像是平面那样的空间。

又例如要计数的是曲线的交点数,这时相切(轻触彼此)的情形就会造成麻烦。

枚举几何学家发展了许多技术来处理这些情况,希望最终的结果是离散的数。

这类问题最早的例子出现于公元前200年左右,希腊数学家阿波罗尼斯(Apollonius of Perga)曾经提问说:“给定三个圆,有多少圆可以同时和这三个圆相切?”这个问题的一般答案是八,并且可以用直尺与圆规来解答。

但是要解决舒伯特问题,则需要更精密的计算技巧。

数学家处理这个难题的方式是逐步处理,每一步只处理一个固定的“次数”(degree)。

这里所谓次数,指的是描述曲线的多项式中各项的最高次数。

例如4x2-5y3是三次多项式,6x3y2+4x是五次(x和y的次数要加起来),2x+3y-4是一次。如果令2x+3y-4等于零(2x+3y-4=0),就可以定义一条线。

因此这个问题是先取出五次三维形,指定有理曲线的次数,然后问说有多少这样的曲线。

舒伯特解出了次数是一的情况,他证明五次三维形有2875条线。

大概一个世纪之后的1986年,现在任职于伊利诺斯大学的卡兹(Sheldon Katz)解出二次的情况,二次有理曲线数等于609250。

坎德拉斯、德拉欧萨、葛林、帕克斯解决的是三次的情形。不过他们的解法运用了镜对称的想法,因为想要直接在五次卡拉比—丘流形上解这个问题极端困难,但格林恩与普列瑟所构造的镜伴流形,提供了容易得多的解题框架。

事实上,在格林恩与普列瑟关于镜对称的原来论文中,就已经指出这个基本的思路。他们说明汤川耦合这个物理量,可以用两种差异很大的数学公式来表示,一种来自原来的流形,另一种来自镜流形。一个公式牵涉流形中不同次数的有理曲线数,根据格林恩的说法,计算起来绝对是很“恐怖”的事情;另一个公式则牵涉流形的形状,相较起来要简单得多。然而因为这一对镜流形描述的是相同的物理性质,因此结果必须相等。这就像“狗”和“犬”两字看起来不同,描述的却是同一种覆毛的动物。格林恩与普列瑟的论文中有一个方程式,明确说明这两组看起来长相各异的公式其实是相等的。格林恩说:“你可以有一个抽象上已知正确的公式,但是想把方程式计算到适当的精确度以得出数值,却是很大的挑战。我们有方程式,却没有从它提炼出数值的工具。而坎德拉斯和他的合作者发明出这项工具,这是很大的成就,对几何学也有很大的影响。”

19世纪几何学的重要结果之一是凯利(Arthur Cayley)与赛尔曼(George Salmon)的研究,它们证明在所谓的“三次曲面”上共有27条直线。舒伯特后来推广了这个凯利—赛尔曼定理。(

这个想法阐明了镜对称的潜力。我们或许不需要再去烦恼卡拉比—丘空间中曲线数量的计数,因为另外有一种和计数这种苦差事比起来很不一样的计算方式,也可以获得相同的答案。坎德拉斯团队运用这个想法,计算了五次三维形中三次有理曲线的数目,结果答案是317206375。

计数这些有理曲线的目的,并不仅止于该数值,而是放眼于整个流形的结构。因为在计数的同时,基本上我们是以成熟的数学技巧在移动这些曲线,直到过程涵盖整个空间。在这样的过程中,我们其实是利用这些曲线来定义这个空间,不管它是五次三维形或其他空间都适用。

计数曲面上的直线或曲线数,是代数几何学与枚举几何学中的常见问题。想知道曲面上的直线的样子,可看看图中这个双直纹双曲面,它是由一系列的直线所完全构成的,而它之所以称为双直纹,是因为曲面上每一点都有两条直线通过。不过对于枚举几何学来说,这样的曲面并不是好例子,因为上面的直线数是无穷多。

这些结果的整体效果,让一个垂死的几何学分支乍然苏醒。根据美国加州大学圣地亚哥分校的数学家马克·格罗斯(Mark Gross)的看法,坎德拉斯团队领先运用镜对称的想法,解决了这个枚举几何学的难题,导致整个领域获得重生。“当时这个领域基本上已经死了,”格罗斯说,“当旧问题解决之后,人们有时回头用数学的新技术来计算舒伯特数,但是这些方法并无新意。”然后完全出乎意料的,“坎德拉斯带来了新方法,是远远超出舒伯特所能想象的方法。”物理学家曾经迫切地从数学借用许多材料,然而当数学家倒过来要跟物理借用资源时,他们却要求先看到坎德拉斯方法严格性的更多证明。

人气小说推荐More+

年代影综:1947我来了
年代影综:1947我来了
关于年代影综:1947我来了:大四学生李天佑魂穿1947年北平城一个12岁的小孩身上,不仅带着三个拖油瓶弟弟妹妹,还被白狗子追杀。意外发现所在世界是正阳门下小女人、情满四合院、新世界、潜伏、人是铁饭是钢等影视剧的世界。看他如何在那个动荡的时代过自己平凡的小日子。多女主,不种马。四合院剧情出现较晚,主要在1949年以后。
十点饭的吃
重生1980:从列车员开始起飞
重生1980:从列车员开始起飞
(年代幽默逗乐+玉佩空间+搞钱票)重生1980年的张有福,改变了前一世的命运,从列车员开始起飞,爷爷奶奶、爹娘、媳妇闺女、大哥大嫂侄子侄女、二姐弟弟妹妹……利用玉佩空间带着一家子人过上好日子,趁着改革开放的东风,赚了一笔小钱,潇洒过完这一生!
淡写的美
诸天监狱,开局降服六翼天使
诸天监狱,开局降服六翼天使
当校草在坟头苏醒,整个世界的神明都慌了——[反套路神明改造系统]:别人跪舔神明,我拿警棍抽神明。堕天使路西法:“人类,你敢用警棍抽我?”(被王林按在地上疯狂输出)将臣:“吾乃尸祖……”(话没说完就被关进solitaryconfinement)“路西法,把你的翅膀借我砍个人。”当林江夜扛着染血的直刀走出监狱,身后传来路西法咬牙切齿的诅咒,却伴随着的提示音。红月在天边渗出血泪,而他袖口的尸斑正以肉眼
断肠久酒
你们找错人了,我只是个卡牌师
你们找错人了,我只是个卡牌师
全民转职,各族当立,这看似和平的年代,实则暗流涌动。转职当天,原本万众瞩目的季川却转职成为F级职业卡牌师,遭众人嫌弃。不过当F级职业碰到SSS级天赋呢?“我的老朋友,再次见面我很开心。高考过后,原本摸鱼的生活仿佛被打破了。当各方势力互相争抢时,每个人耳边突然传出来一句话:“喂,你们找错人了,我只是个卡牌师。既然不能摸鱼了,那就给这个世界一点小小的游戏体验吧。“准备好了吗,相信命运的朋友们?“
单推卡牌师
修罗女帝之绝世无双
修罗女帝之绝世无双
金与紫的霓虹都市下,有着钢铁巨兽。高悬于世人的天穹之上,伫立着守望人间的神明。惶惶的末世之中,充满了人性的考验。工业革命,是这个时代发展的动力。璀璨的时代,便会迎来盛世。这世间有着超脱世人的神秘力量……上架感言。感谢各位读大大的支持,这本书终于上架了。各位看观老爷,动动你们发财的小手,支持这本书吧。你们的支持,就是我写作的最大动力。这本书的成绩,就交给你们了,我相信各位读者大大。请支持正版阅读吧
梦若浮情