言情小说吧【m.yqxsb.com】第一时间更新《跟着番茄学物理》最新章节。
......
【直播画面中,顾神切入正题,声音低沉地说道:“大家知道,51 区的阿波罗计划、西福特计划等项目,背后推动者多为德裔科学家。回顾物理学史,上个世纪前期,德意志籍物理学家大放异彩,像爱因斯坦、莱布尼茨、赫兹、黎曼、普朗克、海森堡等,都为世界物理学发展立下汗马功劳。”】
......
弹幕跳动
“原来51区的科研背后有这么多德国物理巨匠的影子!那他们的理论到底是怎么具体应用到这些计划中的呢?”
“是啊,这些大物理学家的成果,肯定不只是书本上的理论那么简单。”
…
骁睿双手飞速在键盘上敲击,给洛尘发消息:“洛尘,这么多物理学大咖都是德国人,他们的理论对航天技术的影响肯定超乎想象。”
洛尘坐在电脑前,神色专注,推了推眼镜后回复:“在航天探索领域,精确计算航天器轨道是迈向星辰大海的基石,这一任务难度极高。
爱因斯坦的广义相对论,犹如一把开启难题之门的钥匙。广义相对论打破传统认知,指出质量会让时空产生弯曲,航天器在这片弯曲的时空中穿梭,其运动轨迹自然会发生改变。
科学家们借助复杂精妙的公式,把天体质量、航天器初始位置和速度等关键参数代入其中,就能如同绘制地图一般,精准算出航天器在引力场中的轨道,保障其能准确无误地抵达目标位置,为深空探测提供了坚实的理论支撑。”
骁睿眼睛一亮,追问道:“那具体是怎么通过广义相对论来计算轨道的呀?这也太神奇了。”
洛尘耐心解释:“简单来说,广义相对论构建了一个全新的时空模型。
当航天器处于天体的引力场中,就如同在一块被天体质量压弯的弹性布面上移动。
科学家们依据这个模型,将相关参数输入特定公式,比如史瓦西度规公式等,就能详细描绘出航天器在弯曲时空中的运动路径,从而实现精确的轨道计算。”
紧接着,洛尘继续补充道:“而狭义相对论中的时间膨胀效应,在精确的航天通信和导航系统中也必须被考虑进去,否则信号传输和定位都会出现偏差。”
骁睿满脸疑惑,连忙打字:“时间膨胀效应?这和航天通信、导航有什么直接联系呢?”
洛尘回复:“航天通信与导航系统对时间精度的要求近乎苛刻。航天器在太空中高速飞行,根据狭义相对论,其时间流逝速度会与地球表面不同。
想象一下,信号就像在时间长河中穿梭的小船,若不考虑这种时间差异,信号传输的时间节点就会像偏离航线的小船,定位数据也会因此出错,导致航天器无法准确接收指令或确定位置,严重影响航天任务的执行。”
骁睿恍然大悟,又想起之前的问题:“那莱布尼茨的微积分呢,到底在航天工程里怎么用的?”
洛尘回答道:“航天工程是一个复杂庞大的系统,其中飞行器的动力学分析以及轨道优化等工作,犹如精密钟表中的复杂齿轮,每一环都至关重要。
莱布尼茨发明的微积分,恰是推动这些齿轮精准运转的关键动力。
在分析飞行器飞行过程中的加速度、速度和位移等变化关系时,就如同拆解钟表内部的复杂结构,需要用到微积分来精确计算。
例如,通过对加速度进行积分,能得到速度随时间的变化;对速度积分,则能确定飞行器的位移,从而实现对飞行器运动状态的精准把握,为轨道优化提供数据支持。”
骁睿惊叹:“原来微积分在航天里有这么多实际应用,真是太厉害了!”
骁睿紧接着追问:“那赫兹、黎曼、普朗克和海森堡呢?他们的研究在航天领域能发挥什么作用?
感觉他们的理论更抽象,和实际应用的联系不太好理解。”
洛尘开始解释:“在航天技术发展的早期,通信难题如同横亘在人类与宇宙之间的一座大山。赫兹证实了电磁波的存在,为跨越这座大山提供了可能。
航天器与地面控制中心之间的通信,仿佛是搭建了一座无形的桥梁,而电磁波就是在这座桥梁上传递信息的使者,负责传输遥测数据、指令信号,还有宇航员与地面的语音通话、图像传输等。
全球定位系统(GpS)这类航天导航技术,也是基于电磁波传播原理,依靠它来精确测定航天器位置,让航天器在浩瀚宇宙中有了精准的‘导航地图’。”
骁睿看到这儿,不禁脱口而出:“电磁波存在的证实对航天意义重大?快说说,这和我们平常理解的航天通信有啥关系?”